
TREE 

 
1-The Concept of The Tree 

   It implies that we organize the data so that items of information are related by the 

branches. 

Definition: A tree is a finite set of one or more nodes such that: 

1. There is a specially designated node called the root. 

2. The remaining nodes are partitioned into n  0 disjoint sets T1,…, Tn, where each 

of these sets is a tree.  We call T1,…, Tn the subtrees of the root. 

 

 

2- Terminology 

Root of the tree: The top node of the tree that is not a subtree to other node, and has 

two children of subtrees. 

Node: It is stands for the item of information and the branches to other nodes. 

The degree of a node: It is the number of subtrees of the node. 

The degree of a tree: It is the maximum degree of the nodes in the tree 

The parent node: a node that has subtrees is the parent of the roots of the subtrees 

The child node: a node that is the roots of the subtrees are the children of the node 

The Level of the tree: We define the level of a node by initially letting the root be at  

level one 

The depth of a tree: It also called height of a tree.  It is the maximum level of any node  

in the tree 

 

 General Tree Graphical Picture: 
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3- Binary Tree 

Definition: A binary tree is a finite set of nodes that is either empty or consists of a root  

and two disjoint binary trees called the left subtree and the right subtree. 

 

Binary Tree Types: 

 Regular Binary Tree ( 2 ) 

 Skewed Left Binary Tree ( 1 ) 

 Skewed Right Binary Tree ( 3 ) 

 

Three Graphical Pictures of the Binary Tree: 
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4- Properties of Binary Trees 

In particular, we want to find out the maximum number of nodes in a binary tree of 

depth k, and the number of leaf nodes and the number of nodes of degree two in a binary 

tree.  We present both these observations as lemma. 

 

Lemma 1 [Maximum number of nodes]: 

(1) The maximum number of nodes on level i of a binary tree is 2
i-1

, i  1 

(2) The maximum number of nodes in a binary tree of depth k is 2
k
 – 1, k  1 

 

 

Balanced tree: the tree that all leaves in the same level: 

 

 



 
 

 

 

Full Binary tree: the tree that all leaves in the same level and each node have exactly 

two leaves: 

 
 

 

Binary Complete tree: the tree may be full or full to the last level where the leaves at 

the left side  

 

 
 

 



5- Binary Tree Representations 

Array Representation 

The numbering scheme used in it suggests out first representation of a binary tree in 

memory.  Since the nodes are numbered from 1 to n, we can use a one-dimensional array 

to store the nodes.  (We do not use the 0
th
 position of the array.)  Using Lemma 1 we can 

easily determine the locations of the parent, left child, and right child of any node, i, in 

the binary tree. 

 

Linked Representation 

While the sequential representation is acceptable for complete binary trees, it wastes 

space for many other binary trees.  In, addition, this representation suffers from the 

general inadequacies of other sequential representations.  Thus, insertion or deletion of 

nodes from the middle of a tree requires the movement of potentially many nodes to 

reflect the change in the level of these nodes.  We can easily overcome these problems 

by using a linked representation.  Each node has three fields, left_child, data, and 

right_child as two pictures show the node representation of the binary tree below: 
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The Node Class 

First, we need a class of node objects. These objects contain the data representing the 

objects being stored and also references to each of the node’s two children. Here’s how 

that looks: 

 

class Node 

{ 

Int         iData;             // data used as key value 

double   fData;            // other data 

node      leftChild;        // this node’s left child 

node      rightChild;       // this node’s right child 

public void displayNode() 

{ 

    // ( for method body) 

} 

 

 



 

6- Binary Tree Traversals 

There are many operations that we can perform on tree, but one that arises frequently is 

traversing a tree, that is, visiting each node in the tree exactly once.  A full traversal 

produces a linear order for the information in a tree. 

 

Binary Tree Traversals Types 

 Inorder Traversal (Left, Parent, Right)  LNR 

 Preorder Traversal (Parent, Left, Right)  NLR 

 Postorder Traversal (Left, Right, Parent)    LRN 

  

Binary Tree Traversals Functions:  

 

*Inorder Tree Traversal 

Recursive function: 

private void addInOrder(Node node, Set<K> set)  

{ 

   if (node == null) return; 

   addInOrder(node.left, set); 

   set.add(node.key); 

   addInOrder(node.right, set); 

} 

 

For the following tree 
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Result of binary tree example: 

H, D, I, B, J, E, K, A, L, F, M, C, N, G, O 

 



 

Preorder Tree Traversal 

Recursive function: 

private void preorder (Node node, Set<K> set)  

{ 

   if (node == null) return; 

  set.add(node.key); 

   preorder (node.left, set); 

      preorder (node.right, set); 

} 

 

 

Result of binary tree example: 

A, B, D, H, I, E, J, K, C, F, L, M, G, N, O 

 

Postorder Tree Traversal 

Recursive function: 

private void postorder (Node node, Set<K> set)  

{ 

   if (node == null) return; 

     postorder (node.left, set); 

      postorder (node.right, set); 

      set.add(node.key); 

} 

 

 

Result of binary tree example: 

H, I, D, J, K, E, B, L, M, F, N, O, G, C, A 

 

 

7- Binary Search Tree(BST) 

Definition: A binary search tree is a binary tree.  It may be empty.  If it is not empty, it 

satisfies the following properties: 

(1) Every element has a key, and no two elements have the same key, that is, the keys 

are unique. 

(2) The keys in a nonempty left subtree must be smaller than the key in the root of the 

subtree. 

(3) The keys in a nonempty right subtree must be larger than the key in the root of the 

subtree. 

(4) The left and right subtrees are also binary search trees. 

 

Example of the Binary Search Tree: 
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Searching A Binary Search Tree 
   Suppose we wish to search for an element with a key.  We begin at the root.  If the 

root is NULL, the search tree contains no elements and the search is unsuccessful.  

Otherwise, we compare key with the key value in root.  If key equals root’s key value, 

then the search terminates successfully.  If key is less than root’s key value, then no 

elements in the right subtree subtree can have a key value equal to key.  Therefore, we 

search the left subtree of root.  If key is larger than root’s key value, we search the right 

subtree of root. 

Recursive Function for Binary Search Tree: 

 

Search (  root, int   key )  

{ 

 if ( !=root ) 

  return   NULL; 

 if ( key = = root.data ) 

  return   root; 

 if ( key < root.data ) 

  return   search ( root.left_child, key ); 

 return   search ( root.right_child, key ); 

} 

 

Inserting Into A Binary Search Tree 

To insert a new element, key, we must first verify that the key is different from those of 

existing elements.  To do this we search the tree.  If the search is unsuccessful, then we 

insert the element at the point the search terminated. 

 

Insert Function: 



void   insert_node ( tree node, int   num ) 

{ 

 tree   ptr, 

            temp = modified_search ( node, num );  /** 

 if ( temp || ! ( node ) ) 

 { 

  ptr = new node; 

  if ( ptr = = NULL) 

  { 

   print “The memory is full \n”; 

   exit ( 1 ); 

  } 

  Ptr. data = num; 

  Ptr. eft_child = ptr. right_child = NULL; 

  if ( node ) 

  { 

   if ( num < temp.data ) 

    temp.left_child = ptr; 

   else 

    temp.right_child = ptr; 

  } 

  else 

   node = ptr; 

 } 

} 

 

Note ** The function modified_search that is slightly modified version of function 

search.  This function searches the binary search tree *node for the key num.  If the tree 

is empty or if num is present, it returns NULL.  Otherwise, it returns a pointer to the last 

node of the tree that was encountered during the search.  The new element is to be 

inserted as a child of this node. 

 

Deletion from a Binary Search Tree 

 Deletion of a leaf node is easy.  For example, if a leaf node is left child, we set the 

left child field of its parent to NULL and free the node.   

 The deletion of a nonleaf node that has only a single child is also easy.  We erase 

the node and then place the single child in the place of the erased node.   

 When we delete a nonleaf node with two children, we replace the node with either 

the largest element in its left subtree or the smallest elements in its right subtree.  

Then we proceed by deleting this replacing element from the subtree from which 

it was taken. 



 

 
 

 

 

 

 
 

 

 
 

 



8-  Representation Expressions Using Binary Tree 

An important application for binary trees is the use of arithmetic expression ,where the 

operation  (+,-,*,, etc.) represent  The tree node  levels and the operand is leaves in that 

arithmetic expression, where the level of tree reflect the primacy of computational 

operation. 

Trees Examples: Use the binary tree to represent the following arithmetic expression:  

                                        
                                        S^(a+b^n): 

     

 
 

 

 

 



 

9- Transfer the tree to binary tree 

To transfer the tree to binary tree ,following the steps: 

a. The left child for binary tree is the same left child of tree 

b. The  brothers of this left child of tree are became the right child in binary tree 

c. Repeat the same steps and the left child represent now the root. 

 

 

 
 

 

10- AVL TREE(BLANCED TREE) 

     In this part that you can form several differently shaped binary search trees  from the 

same collection of data. Some of these trees will be balanced and some will not. You 

could take an unbalanced binary search tree and rearrange its nodes to get a balanced 

binary search tree. Recall that every node in a balanced binary tree has subtrees whose 

heights differ by no more than 1. 

   This idea of rearranging nodes to balance a tree was first developed in 1962 by two 

mathematicians, Adel’son-Vel’skii and Landis. Named after them, the AVL tree is a binary 

search tree that rearranges its nodes whenever it becomes unbalanced. The balance of a 

binary search tree is upset only when you add or remove a node. Thus, during these 

operations, the AVL tree rearranges nodes as necessary to maintain its balance. 

 

Note: A node is balanced if it is the root of a balanced tree, that is, if its two subtrees differ 

in height by no more than 1.See the following figure :   



 

 
Single Rotations 

Right rotations. : See the following figure , After inserting (a) 60; (b) 50; and (c) 20 into an 

initially empty binary search tree, the tree is not balanced; (d) a corresponding AVL tree 

rotates its nodes to restore balance 

 
 

 

 

 

 

Lift rotation: See the following figure , (a) Adding 80 to the above tree in (d) does not 

change the balance of the tree; (b) a subsequent addition of 90 makes the tree unbalanced ; 

(c) a left rotation restores its balance 

 
    

 

 

 



Another example of right rotation: 

 

 

 
 

Double Rotations 

The following rotations are called a right-left double rotation  : (a) Adding 70 to the tree  

destroys its balance; to restore the balance, perform both (b) a right rotation and (c) a left 

rotation 

 

 
 

Left-right double rotations.: (a) The AVL tree after additions that maintain its balance; (b) 

after an addition that destroys the balance; (c) after a left rotation; (d) after a right rotation: 

 

 



 


